Company Address City, State Phone

other

JOB TITLE Example 6 - Wind

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

CS09 Ver 10.01.10 www.struware.com

STRUCTURAL CALCULATIONS

FOR

Example 6 - Wind Example 11 - Seismic

2000 IBC Handbook - Structural Provisions

Company JOB TITLE Example 6 - Wind Address City, State SHEET NO. JOB NO. Phone **CALCULATED BY**

CHECKED BY

www.struware.com

DATE

DATE

Code Search

Code: International Building Code 2000

Occupancy:

other

Occupancy Group = В Business

Occupancy Category & Importance Factors:

Occupancy Category = I

> Wind factor = 1.00 $Snow\ factor =$ 1.00 Seismic factor = 1.00

Type of Construction:

Fire Rating:

Roof =1.0 hr 2.0 hr Floor =

Building Geometry:

Roof angle (θ)	0.00 / 12	0.0 de
Building length (L)	130.0 ft	
Least width (B)	130.0 ft	
Mean Roof Ht (h)	255.0 ft	
Parapet ht above grd	258.0 ft	
Minimum parapet ht	3.0 ft	

Live Loads:

Roof 0 to 200 sf: 20 psf

 $200\ to\ 600\ sf:\ 24$ - 0.02Area, but not less than $12\ psf$

over 600 sf: 12 psf

Floor

Typical Floor	50 psf
Lobbies & first floor corridors	100 psf
Corridors above first floor	80 psf

Mechanical 100 psf Stairs & Exitways 100 psf Balcony / Deck 50 psf 20 psf Partitions

Company

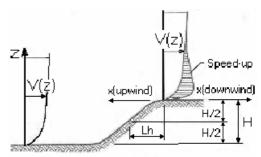
Address
City, State
Phone
other

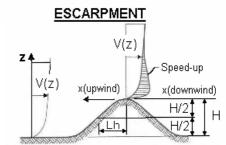
JOB TITLE Example 6 - Wind

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Wind Loads:

Importance Factor 1.00 Basic Wind speed 85 mph Directionality (Kd) 0.85 **Exposure Category** В Enclosure Classif. Partially Enclosed Internal pressure +/-0.55 1.291 Kh case 1 Kh case 2 1.291


Type of roof Monoslope


Topographic Factor (Kzt)

Topography Flat Hill Height (H) 80.0 ft Half Hill Length (Lh) 100.0 ft Actual H/Lh 0.80 Use H/Lh 0.50 Modified Lh 160.0 ft From top of crest: x= 50.0 ft Bldg up/down wind? downwind

 $\begin{array}{lll} \mbox{H/Lh} = 0.50 & \mbox{K}_1 = & 0.000 \\ \mbox{x/Lh} = 0.31 & \mbox{K}_2 = & 0.792 \\ \mbox{z/Lh} = 1.59 & \mbox{K}_3 = & 1.000 \\ \mbox{At Mean Roof Ht:} & \mbox{At Mean Roof Ht:} & \mbox{The Model of the Model of t$

 $Kzt = (1+K_1K_2K_3)^2 = 1.00$

2D RIDGE or 3D AXISYMMETRICAL HILL

Gust Effect Factor

h = 255.0 ft B = 130.0 ft /z (0.6h) = 153.0 ft

Flexible structure if natural frequency < 1 Hz (T > 1 second).

 $\label{eq:hamiltonian} However, if building h/B < 4 \ then probably rigid structure \ (rule of thumb).$ $h/B = 1.96 \qquad \qquad Therefore, probably rigid structure$

G = 0.88 Using flexible structure formula

Rigid	Structure	Flexible or	Dynamically S	Sensitive S	tructure		
/ε =	0.33	Natural Frequency $(n_1) =$	0.5 Hz				
1 =	320 ft	Damping ratio (β) =	0.01				
$z_{min} =$	30 ft	/b =	0.45				
c =	0.30	$/\alpha =$	0.25				
$g_Q, g_v =$	3.4	Vz =	82.3				
$L_z =$	533.6 ft	$N_1 =$	3.24				
$\mathbf{Q} =$	0.81	$R_n =$	0.067				
$I_z =$	0.23	$R_h =$	0.131	$\eta =$	7.125	h =	255.0 ft
G =	0.83	$R_B =$	0.237	$\eta =$	3.632		
		$R_L =$	0.079	$\eta =$	12.160		
		$g_R =$	4.021				
		R =	0.342				
		G =	0.876				

Company

JOB TITLE Example 6 - Wind

Address City, State Phone other

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Enclosure Classification

Test for Enclosed Building: A building that does not qualify as open or partially enclosed.

Test for Open Building: All walls are at least 80% open.

 $Ao \ge 0.8Ag$

Test for Partially Enclosed Building:

	Input
Ao	0.0 sf
Ag	0.0 sf
Aoi	0.0 sf
Agi	0.0 sf

	Test	
Ao ≥ 1.1Aoi	YES	
Ao > 4' / 0.01Ag	NO	
$Aoi / Agi \le 0.20$	NO	Building is NOT Partially Enclosed.
· ·		

_

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao >= 1.1Aoi

Ao > smaller of 4' or 0.01 Ag

 $Aoi / Agi \le 0.20$

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor ${\rm Ri.}$

Total area of all wall & roof openings (Aog): 0 sf Unpartitioned internal volume (Vi): 0 cf Ri = 1.00

Altitude adjustment to constant 0.00256:

Altitude = 0 feet Average Air Density = 0.0765 lbm/ft³

Constant = 0.00256

Company Address City, State Phone

other

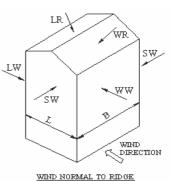
JOB TITLE Example 6 - Wind

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Wind Loads - MWFRS all h (Enclosed/partially enclosed only)

Kh (case 2) =	1.29	h =	255.0 ft	GCpi =	+/-0.55
Base pressure $(q_h) =$	20.3 psf	ridge ht =	255.0 ft	G =	0.88
		_			

 $Roof\ Angle = \quad 0.0\ deg \qquad \qquad L = \quad 130.0\ ft \qquad \qquad z\ for\ qi: \qquad 255.0\ ft \quad use\ 90.00$


Roof tributary area - (h/2)*L: 16575 sf B = 130.0 ft qi = 15.1 psf for positive internal pressures (h/2)*B: 16575 sf

Surface Pressures (psf)	Wind Normal to Ridge (psf)				Wind Parallel to Ridge			idge (psf)	
	B/L =	1.00	h/L = 1.96			L/B = 1.00		h/L = 1.96	
Surface	Cp	q_hGC_p	$w/\!\!+\!\!q_iGC_{pi}$	$w/\text{-}q_hGCpi$	Dist.*	Cp	q_hGC_p	$w/+q_iGC_{pi}$	$w/ \ \hbox{-} q_h GC_{pi}$
Windward Wall (WW)	0.80	0.80 14.2 see table below			0.80	14.2	see tab	le below	
Leeward Wall (LW)	-0.50	-8.9	-17.2	2.3		-0.50	-8.9	-17.2	2.3
Side Wall (SW)	-0.70	-12.5	-20.7	-1.3		-0.70	-12.5	-20.7	-1.3
Leeward Roof (LR)		**			Included in windward roof				
Windward Roof: 0 to h/2*	-1.04	-18.5	-26.8	-7.3	0 to h/2*	-1.04	-18.5	-26.8	-7.3
> h/2*	-0.70	-12.5	-20.7	-1.3	> h/2*	-0.70	-12.5	-20.7	-1.3

^{**}Roof angle < 10 degrees. Therefore, leeward roof is included in windward roof pressure zones.

^{*}Horizontal distance from windward edge

<u> </u>	Windward Wall Pressures at "z" (psf) Combined WW + LW									
				W	indward Wa	Normal	Parallel			
	Z	Kz	Kzt	q_zGC_p	$w/\!\!+\!\!q_iGC_{pi}$	$w/\text{-}q_hGC_{pi}$	to Ridge	to Ridge		
	0 to 15'	0.57	1.00	6.3 psf	-2.0 psf	17.5 psf	15.2 psf	15.2 psf		
	20.0 ft	0.62	1.00	6.9	-1.4	18.0	15.8	15.8		
	25.0 ft	0.67	1.00	7.3	-1.0	18.5	16.2	16.2		
	30.0 ft	0.70	1.00	7.7	-0.6	18.9	16.6	16.6		
	40.0 ft	0.76	1.00	8.4	0.1	19.5	17.3	17.3		
	50.0 ft	0.81	1.00	8.9	0.6	20.1	17.8	17.8		
	60.0 ft	0.85	1.00	9.4	1.1	20.6	18.3	18.3		
	70.0 ft	0.89	1.00	9.8	1.5	21.0	18.7	18.7		
	80.0 ft	0.93	1.00	10.2	1.9	21.4	19.1	19.1		
	90.0 ft	0.96	1.00	10.6	2.3	21.7	19.5	19.5		
	100.0 ft	0.99	1.00	10.9	2.6	22.1	19.8	19.8		
	120.0 ft	1.04	1.00	11.5	3.2	22.6	20.4	20.4		
	140.0 ft	1.09	1.00	12.0	3.7	23.2	20.9	20.9		
	160.0 ft	1.13	1.00	12.5	4.2	23.6	21.4	21.4		
	180.0 ft	1.17	1.00	12.9	4.6	24.0	21.8	21.8		
	200.0 ft	1.20	1.00	13.3	5.0	24.4	22.2	22.2		
	250.0 ft	1.28	1.00	14.2	5.9	25.3	23.0	23.0		
=	255 0 ft	1 29	1.00	14.2	5.9	25.4	23.1	23.1		

WR WR WR LW SW WW DIRECTION


NOTE: See figure 6-9 of ASCE7 for the application of full and partial loading

of the above wind pressures. There are 4 different loading cases.

Parapet

Z	Kz	Kzt	qp (psf)
258.0 ft	1.30	1.00	20.4

Windward parapet: 30.6 psf (GCpn = +1.5) Leeward parapet: -20.4 psf (GCpn = -1.0)

Company
Address
City, State
Phone
other

JOB TITLE Example 6 - Wind

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Wind Loads - Components & Cladding : h > 60'

Kh (case 1) = 1.29 255.0 ft h =Base pressure (qh) = 20.3 psf 13.0 ft a = +/-0.55 Minimum parapet ht = 3.0 ft GCpi = Roof Angle = 15.1 psf for 0.0 deg qi =

positive internal pressures

Roof	GCp		Surface Pressure (psf)			User input		
Area	10 sf	100 sf	500 sf	10 sf	100 sf	500 sf	75 sf	250 sf
Negative Zone 1	-1.40	-1.11	-0.90	-36.7 psf	-30.7 psf	-26.6 psf	-31.5 psf	-28.4 psf
Negative Zone 2	-2.30	-1.89	-1.60	-55.0 psf	-46.6 psf	-40.8 psf	-47.7 psf	-43.3 psf
Negative Zone 3	-2.30	-1.89	-1.60	-55.0 psf	-46.6 psf	-40.8 psf	-47.7 psf	-43.3 psf
Positive Zones 1-3	-	-	-	10.0 psf	10.0 psf	10.0 psf	10.0 psf	10.0 psf

Negative zone 3 = zone 2, since parapet >= 3ft.

Parapet

 $qp=20.4\;psf$

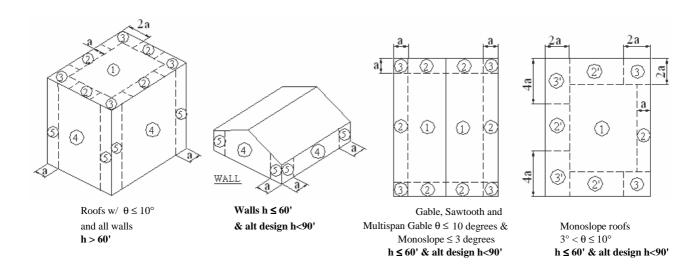
CASE A = pressure towards building CASE B = pressure away from building

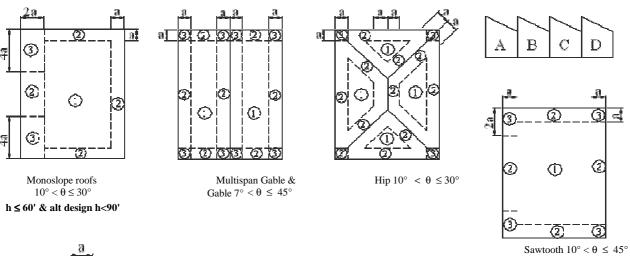
	Surface Pressure (psf)			User input
Solid Parapet Pressure	10 sf	100 sf	500 sf	40 sf
CASE A: Interior zone:	65.2 psf	53.7 psf	44.8 psf	58.8 psf
Corner zone:	65.2 psf	53.7 psf	44.8 psf	58.8 psf
CASE B : Interior zone:	-36.7 psf	-31.6 psf	-26.5 psf	-34.5 psf
Corner zone:	-55.0 psf	-43.8 psf	-32.6 psf	-50.2 psf

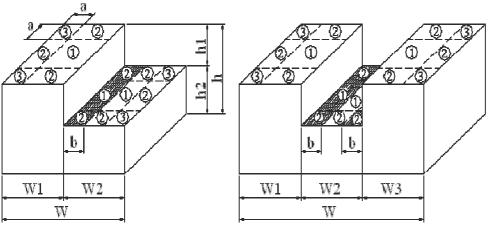
Walls		GCp		Surfa	ce Pressure a	ıt "h"	User	input
Area	20 sf	100 sf	500 sf	20 sf	100 sf	500 sf	50 sf	200 sf
Negative Zone 4	-0.90	-0.80	-0.70	-26.6 psf	-24.5 psf	-22.5 psf	-25.4 psf	-23.7 psf
Negative Zone 5	-1.80	-1.40	-1.00	-44.8 psf	-36.7 psf	-28.6 psf	-40.2 psf	-33.2 psf
Positive Zone 4 & 5	0.90	0.75	0.60	29.4 psf	26.4 psf	23.3 psf	27.7 psf	25.1 psf

NOTE: Negative zones 4 & 5 pressures apply to all heights. Positive pressures vary with height, see below.

Wall surfac	e pressure a	at 'z'		Positi	ve zone 4 & :	5 (psf)	User	input
Z	Kz	Kzt	qz (psf)	20	100	500	50 sf	200 sf
0 to 15'	0.70	1.00	11.0	21.1	19.4	17.8	20.1	18.7
20.0 ft	0.70	1.00	11.0	21.1	19.4	17.8	20.1	18.7
25.0 ft	0.70	1.00	11.0	21.1	19.4	17.8	20.1	18.7
30.0 ft	0.70	1.00	11.0	21.1	19.4	17.8	20.1	18.7
40.0 ft	0.76	1.00	12.0	21.9	20.1	18.3	20.9	19.4
50.0 ft	0.81	1.00	12.7	22.6	20.7	18.8	21.5	19.9
60.0 ft	0.85	1.00	13.4	23.2	21.2	19.2	22.1	20.4
70.0 ft	0.89	1.00	14.0	23.8	21.7	19.6	22.6	20.8
80.0 ft	0.93	1.00	14.6	24.3	22.1	19.9	23.0	21.2
90.0 ft	0.96	1.00	15.1	24.7	22.5	20.2	23.4	21.5
100.0 ft	0.99	1.00	15.5	25.1	22.8	20.5	23.8	21.8
120.0 ft	1.04	1.00	16.4	25.9	23.4	21.0	24.5	22.4
140.0 ft	1.09	1.00	17.1	26.6	24.0	21.4	25.1	22.9
160.0 ft	1.13	1.00	17.8	27.2	24.5	21.8	25.6	23.3
180.0 ft	1.17	1.00	18.4	27.7	24.9	22.2	26.1	23.8
200.0 ft	1.20	1.00	18.9	28.2	25.4	22.5	26.6	24.1
250.0 ft	1.28	1.00	20.2	29.3	26.3	23.3	27.6	25.0
= 255.0 ft	1.29	1.00	20.3	29.4	26.4	23.3	27.7	25.1


Company


Address City, State Phone other JOB TITLE Example 6 - Wind


SHEET NO.	
DATE	
DATE	
	DATE

h ≤ 60' & alt design h<90'

Location of Wind Pressure Zones

Stepped roofs $\theta \le 3^{\circ}$ **h** \le **60'** & alt design h<**90'**

Company JOB TITLE Example 6 - Wind Address City, State JOB NO. SHEET NO. Phone CALCULATED BY DATE other CHECKED BY DATE

Seismic Loads:

Seismic Use Group: I Importance Factor (I): 1.00

Site Class: D

Ss (0.2 sec) = 150.00 %gS1 (1.0 sec) = 60.00 %g

Fa = 1.000 $S_{DS} =$ 1.000 Sms =1.500 Design Category = D Fv = 1.500 Sm1 =0.900 0.600Design Category = D $S_{D1} =$

Seismic Design Category = **D**Number of Stories: 20

Structure Type: Not applicable
Plan Structural Irregularities: No plan Irregularity
Vertical Structural Irregularities: No vertical Irregularity

Flexible Diaphragms: No

Building System: **Dual Systems with special Moment Frames** Seismic resisting system: **Special reinforced concrete shear walls**

System Building Height Limit: Height not limited

Actual Building Height (hn) = 255.0 ft

See Code section 1617.6.4 for exceptions and other system limitations

DESIGN COEFFICIENTS AND FACTORS

Response Modification Factor (R) = 8 System Over-Strength Factor (Ω 0) = 2.5 Deflection Amplification Factor (Cd) = 6.5

 $S_{DS} = 1.000$ $S_{D1} = 0.600$

Code Reference Section for Detailing: 1910.2.4 ρ = redundancy coefficient

 $Special \ Seismic \ Load \ Effect \ (Em) = \ \ \Omegao \ Q_E \ +/- \ 0.2S_{DS} \ D \\ = 2.5 \ Q_E \ +/- \ \ 0.200D \\ D = dead \ load \ \ D = dead \ load \ \ D = dead \ load \ \ D = dead \ load$

PERMITTED ANALYTICAL PROCEDURES

Index Force Analysis (Seismic Category A only)

Method Not Permitted

Simplified Analysis Method Not Permitted

Equivalent Lateral-Force Analysis Method Not Permitted

Seismic response coef. (Cs) = SdsI/R = 0.125need not exceed Cs = SdtI/RT = 0.049but not less than Cs = 0.044SdsI = 0.044USE Cs = 0.049

Design Base Shear V = Method Not Permitted

Model, Linear & Nonlinear Response Analysis - Permitted (see code for procedure)

ALLOWABLE STORY DRIFT

Structure Type: All other structures

Allowable story drift = 0.020 hsx where hsx is the story height below level x

Company Address City, State JOB TITLE Example 6 - Wind JOB NO.

JOB NO. SHEET NO.

CALCULATED BY DATE

CHECKED BY DATE

Seismic Loads - cont. :

Seismic Design Category (SDC)= D

I = 1.00Sds = 1.000

CONNECTIONS

Force to connect smaller portions of structure to remainder of structure

 $Fp = 0.133 Sdsw_p = \\ 0.13 \ w_p$

or $Fp = 0.5w_p = 0.05 w_p$ Use $Fp = 0.13 w_p$ $w_p = weight of smaller portion$

Beam, girder or truss connection for resisting horizontal force parallel to member

 F_P = no less than 0.05 times dead plus live load vertical reaction

Phone

other

Anchorage of Concrete or Masonry Walls to elements providing lateral support

 $Fp = 1.2IeSdsWw = 1.200 w_w$

or $Fp = 0.1 w_w = 0.10 \ w_w$ Use $Fp = 1.20 \ w_w$ but not less than 200.0 plf = 400SdsIe

Connection force given is for flexible diaphragms (use architectural components for ridgid diaphrams)

MEMBER DESIGN

Bearing Walls and Shear Walls (out of plane force)

 $Fp = 0.40IeSdsw_w = 0.400 w_w$

or $Fp = 0.1 w_w = 0.10 w_w$ Use $Fp = 0.40 w_w$

Diaphragms

Fp = (Sum Fi / Sum Wi)Wpx + Vpx = (Sum Fi / Sum Wi)Wpx + Vpx

 $need\ not\ exceed\ 0.3\ SdsIeWpx + Vpx = \quad \ 0.300\ Wpx + Vpx$

but not less than 0.15 SdsIeWpx + Vpx = 0.150 Wpx + Vpx

ARCHITECTURAL COMPONENTS SEISMIC COEFFICIENTS

Architectural Component: 2. Cantilever Elements (Unbraced or Braced to Structural Frame Below Its Center of Mass)

a. Parapets and cantilever interior nonstructural walls

Importance Factor (Ip): 1.0

Component Amplification Factor $(a_p) = 2.5$ h= 255.0 feet

Comp Response Modification Factor $(R_p) = 2.5$ z= 50.0 feet z/h = 0.20

 $Fp = 0.4a_p Sds IpWp(1+2z/h)/Rp = 0.557 Wp$

not greater than Fp = 1.6SdsIpWp = 1.600 Wp

but not less than Fp = 0.3SdsIpWp = 0.300 Wp use Fp = 0.557 Wp

MECH AND ELEC COMPONENTS SEISMIC COEFFICIENTS

Seismic Design Category D & Ip=1.0, therefore see 2000IBC Section 1621.1.1 for exceptions

Mech or Electrical Component: General Electrical - Distribution systems (bus ducts, conduit, cable tray)

error

Importance Factor (Ip): 1.0

Component Amplification Factor $(a_p) = 1$ h= 255.0 feet

Comp Response Modification Factor $(R_p) = 3.5$ z = 50.0 feet z/h = 0.20

 $Fp = 0.4a_pSdsIpWp(1+2z/h)/Rp = 0.159 \ Wp$

not greater than Fp = 1.6SdsIpWp = 1.600 Wp

but not less than Fp = 0.3SdsIpWp = 0.300 Wp use Fp = 0.300 Wp

Company Address City, State Phone

JOB TITLE	Example	6 -	Wind
-----------	---------	-----	------

JOB NO	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

www.struware.com

CODE SUMMARY

Code: International Building Code 2000

Live Loads:

other

Roof 0 to 200 sf: 20 psf

200 to 600 sf: 24 - 0.02 Area, but not less than 12 psf

over 600 sf: 12 psf

Typical Floor 50 psf
Lobbies & first floor corridors 100 psf
Corridors above first floor 80 psf

Mechanical 100 psf
Stairs & Exitways 100 psf
Balcony / Deck 50 psf
Partitions 20 psf

Dead Loads:

Floor 86.1 psf Roof 20.0 psf

Wind Design Data:

Basic Wind speed 85 mph
Mean Roof Ht (h) 255.0 ft
Occupancy Category I
Importance Factor 1.00
Exposure Category B
Enclosure Classif. Partially Enclosed
Internal pressure Coef. +/-0.55
Directionality (Kd) 0.85

Roof Snow Loads:

Design Roof Snow load 0.0 psf Flat Roof Snow Load Pf = 33.6 psf 40.0 psf Ground Snow Load Pg = Rain on Snow Surcharge 0.0 psf I = Importance Factor 1.00 Snow Exposure Factor Ce = 1.00 Thermal Factor Ct = 1.20 Sloped-roof Factor Cs = 1.00

Earthquake Design Data:

Basic Structural System = Dual Systems with special Moment Frames
Seismic Resisting System = Special reinforced concrete shear walls

Analysis Procedure = Equivalent Lateral-Force Analysis

Company Address City, State Phone other

JOB TITLE	Example	6 -	Wind
-----------	---------	-----	------

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

www.struware.com

CODE SUMMARY- continued

Component and cladding wind pressures

Roof		Surface Pressure (psf)		
	Area	10 sf	100 sf	500 sf
	Negative Zone 1	-36.7	-30.7	-26.6
	Negative Zone 2	-55.0	-46.6	-40.8
	Negative Zone 3	-55.0	-46.6	-40.8
]	Positive Zones 1-3	10.0	10.0	10.0

Parapet	Solid Parapet Pressure (psf)		
Area	10 sf	100 sf	500 sf
CASE A: Interior zone	65.2	53.7	44.8
Corner zone	65.2	53.7	44.8
CASE B: Interior zone	-36.7	-31.6	-26.5
Corner zone	-55.0	-43.8	-32.6

Wall	Г	Surface Pressure (psf)		
	Area	20 sf	100 sf	500 sf
Negative	Zone 4	-26.6	-24.5	-22.5
Negative	Zone 5	-44.8	-36.7	-28.6
Positive Zon				
	0 to 15'	21.1	19.4	17.8
	20 ft	21.1	19.4	17.8
	25 ft	21.1	19.4	17.8
	30 ft	21.1	19.4	17.8
	40 ft	21.9	20.1	18.3
	50 ft	22.6	20.7	18.8
	60 ft	23.2	21.2	19.2
	70 ft	23.8	21.7	19.6
	80 ft	24.3	22.1	19.9
	90 ft	24.7	22.5	20.2
	100 ft	25.1	22.8	20.5
	120 ft	25.9	23.4	21.0
	140 ft	26.6	24.0	21.4
	160 ft	27.2	24.5	21.8
	180 ft	27.7	24.9	22.2
	200 ft	28.2	25.4	22.5
	250 ft	29.3	26.3	23.3
h =	= 255 ft	29.4	26.4	23.3