Company Address City, State Phone

other

JOB TITLE Snow Example 1

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

CS09 Ver 10.01.10 www.struware.com

STRUCTURAL CALCULATIONS

FOR

Snow Example 1

ASCE 7-05 Commentary

www.struware.com

Code Search

Code: ASCE 7 - 05

Occupancy:

Occupancy Group = R Residential

Occupancy Category & Importance Factors:

Occupancy Category = II

 $\begin{array}{ll} \text{Wind factor} = & 1.00 \\ \text{Snow factor} = & 1.00 \\ \text{Seismic factor} = & 1.00 \end{array}$

Type of Construction:

Fire Rating:

 $\begin{aligned} Roof = & 0.0 \text{ hr} \\ Floor = & 0.0 \text{ hr} \end{aligned}$

Building Geometry:

Roof angle (θ)	8.00 / 12	33.7 deg
Building length (L)	100.0 ft	
Least width (B)	60.0 ft	
Mean Roof Ht (h)	30.0 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

Roof 0 to 200 sf: 16 psf

 $200\ to\ 600\ sf:\quad 19.2$ - $0.016 Area,\ but\ not\ less\ than\ 12\ psf$

over 600 sf: 12 psf

Floor

Typical Floor 40 psf
Habital attics & sleeping areas 30 psf
Attics without storage 10 psf

Mechanical

Stairs & Exitways 100 psf
Balcony / Deck 40 psf
Partitions N/A

Company Address City, State Phone

other

JOB TITLE Snow Example 1

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Snow Loads:

 $\begin{array}{ccc} Roof slope & = & 33.7 \ deg \\ Horiz. \ eave \ to \ ridge \ dist \ (W) = & 30.0 \ ft \\ Roof \ length \ parallel \ to \ ridge \ (L) = & 100.0 \ ft \end{array}$

Type of Roof Hip and gable w/ trussed systems

Type of Hoor		una gaore .
Ground Snow Load	Pg =	30.0 psf
Importance Category	=	II
Importance Factor	I =	1.0
Thermal Factor	Ct =	1.00
Exposure Factor	Ce =	1.0

Pf = 0.7*Ce*Ct*I*Pg = 21.0 psf Pf min = 0.0 psf

Flat Roof Snow Load Pf = 21.0 psf
Rain on Snow Surcharge Angle = 0.60 deg
Code Maximum Rain Surcharge 5.0 psf
Rain on Snow Surcharge = 0.0 psf
Unobstructed Slippery

Surface (per Section 7.4) = no Sloped-roof Factor Cs = 0.91

Design Roof Snow Load (Ps) = 19.1 psf ("balanced" snow load)

Building Official Minimum =

Exposure Factor, Ce				
	I	Exposure of roof		
Terrain	Fully	Partially	Sheltered	
A	n/a	1.1	1.3	
В	0.9	1.0	1.2	
С	0.9	1.0	1.1	
D	0.8	0.9	1.0	
Above treeline	0.7	0.8	n/a	
Alaska-no trees	0.7	0.8	n/a	

NOTE: Alternate spans of continuous beams and other areas shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code.

Unbalanced Snow Loads - for Hip & Gable roofs only

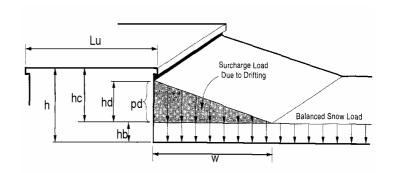
Larger of 2.38 degrees or 70/W + 0.5 = 2.8 deg Unbalanced snow loads must be applied

0.0 psf

Windward snow load = 5.7 psf = 0.3 PsLeeward snow load from ridge to 6.08' = $46.2 \text{ psf} = \text{hd}\gamma / \sqrt{S} + Ps$ Leeward snow load from 6.08' to the eave = 19.1 psf = Ps

Leeward Snow Drifts - from adjacent higher roof

Surcharge load:


0.0 ft Upper roof length lu = Projection height 0.0 ft Building separation 0.0 ft s =Adjacent structure factor 1.00 17.9 pcf Snow density $\gamma =$ Balanced snow height hb = 1.06 ft -1.06 ft hc = hc/hb < 0.2 = -1.0Therefore, no drift

Drift height hd = 0.00 ftDrift width w = -10.37 ftSurcharge load: pd = g*hd = 0.0 psf

Windward Snow Drifts - Against walls, parapets, etc more than 15' long

0.0 ft Building roof length lu = Projection height h = 0.0 ft 17.9 pcf Snow density $\gamma =$ 1.06 ft Balanced snow height hb = hc = -1.06 ft hc/hb < 0.2 = -1.0Therefore, no drift Drift height hd = 0.00 ft Drift width w =-8.52 ft

pd = g*hd =

